DECODING DIVERGENT DISTANCES

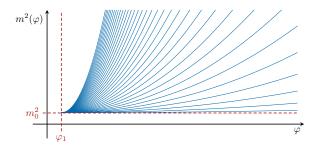
Motivation

Why should the Swampland Distance Conjecture be true?

[Ooguri and Vafa '06]

$$m(\varphi_1) \sim m(\varphi_0) e^{-\lambda d(\varphi_1, \varphi_0)}, \qquad d \to \infty$$

Starting to have a good **top-down** understanding of it in special settings. [Ooguri, Vafa, Grimm, Palti, Valuenzuela, Lee, Lerche, Wiegand, and many many others]



 $d(arphi_1,arphi_0)$ measured using field space or Zamolodchikov metrics

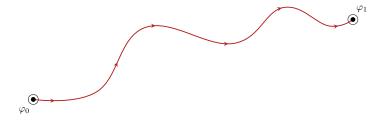
What's so special about infinite distance points?

Observation | Both the field space and Zamolodchikov metrics are proportional to the **quantum information metric**, so these **share** infinite distance points

[Provost and Vallee '80; Wootters '81; Miyaji et. al. '15, JS '21]

Defined for **arbitrary** families of theories, not just highly symmetric ones.

What do infinite distances mean? What do they need?



Bottom Line

Infinite distance limits are factorization limits, $\langle x^k angle \sim \langle x angle^k$

Unitarity dictates information metric has **universal** behavior

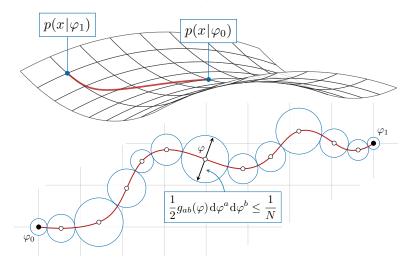
$$\mathrm{d}s^2 \propto \frac{\mathrm{d}\epsilon^2}{\epsilon^2}, \qquad \epsilon \to 0$$

Explains why infinite distance points are weakly-coupled, and provides a **bottom-up motivation for SDC**

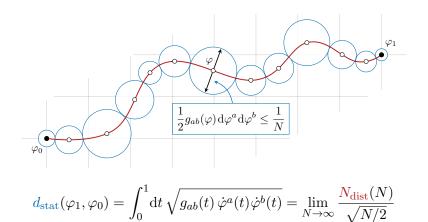
Gravity obstructs factorization

Towers of light fields "turn off" gravity, e.g. send $M_{\rm pl}\to\infty,$ so the theory can consistently realize these limits

A continuous family of theories $p(x | \varphi)$ forms a **statistical manifold**



The unique **information metric** $g_{ab}(\varphi)$ is defined by how readily we can distinguish $p(x|\varphi)$ from its neighbors with N samples



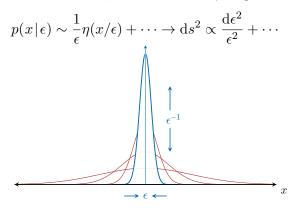
Information metric measures **statistical distance**, which **counts** number of distinguishable distributions along path in parameter space.

A theory is at infinite distance if it is hyper-distinguishable.

Unitarity greatly restricts how $p(x | \epsilon)$ can behave as $\epsilon \to 0$. These are probability distributions or quantum states Families that approach a fixed distribution are at **finite distance** $p(x|\epsilon) \sim p_0(x) + \epsilon^{\alpha} p_1(x) + \dots \to \mathrm{d}s^2 \propto \frac{\mathrm{d}\epsilon^2}{\epsilon^{2-2\alpha}}$ $p_0(x)$ x

Critical points can be singular, $0 < \alpha < 1$, but **always** at finite distance

Infinite distance requires that the family degenerates



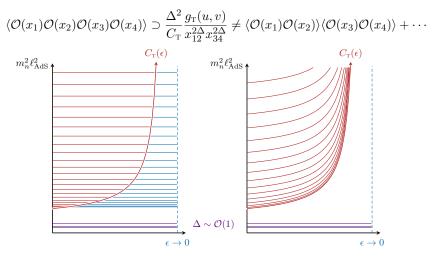
Logarithmic singularity is **universal***

[*Assuming that expectation values remain finite as $\epsilon \to 0]$

Infinite distance signals factorization, weak-coupling

See this ${\it explicitly}$ for: massive fields, towers of fields, tensionless strings, classical limits, gauge theories, and generic large N limits

Gravity Abhors Factorization



Need to send $M_{\rm pl} \rightarrow \infty$ to **consistently** factorize correlation functions

$$\mathrm{d}s^2 \propto \mathrm{d}M_{\mathrm{pl}}^2/M_{\mathrm{pl}}^2 \to m_n(s) \sim m_n(0) \,\mathrm{e}^{-\lambda s}$$

Bottom Line

Infinite distance limits are factorization limits, $\langle x^k
angle \sim \langle x
angle^k$

Unitarity dictates information metric has **universal** behavior

$$\mathrm{d}s^2 \propto \frac{\mathrm{d}\epsilon^2}{\epsilon^2}, \qquad \epsilon \to 0$$

Explains why infinite distance points are weakly-coupled, and provides a **bottom-up motivation for SDC**

Gravity obstructs factorization

Towers of light fields "turn off" gravity, e.g. send $M_{\rm pl}\to\infty,$ so the theory can consistently realize these limits

Thanks!